Basis functions for concave polygons

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basis functions for concave polygons

Polynomials suffice as finite element basis functions for triangles, parallelograms, and some other elements of little practical importance. Rational basis functions extend the range of allowed elements to the much wider class of well-set algebraic elements, where well-set is a convexity type constraint. The extension field from R(x, y) to R(x, y, √ x2 + y2) removes this quadrilateral constrain...

متن کامل

The Sugeno fuzzy integral of concave functions

The fuzzy integrals are a kind of fuzzy measures acting on fuzzy sets. They can be viewed as an average membershipvalue of fuzzy sets. The value of the fuzzy integral in a decision making environment where uncertainty is presenthas been well established. Most of the integral inequalities studied in the fuzzy integration context normally considerconditions such as monotonicity or comonotonicity....

متن کامل

Divergence for s-concave and log concave functions

We prove new entropy inequalities for log concave and s-concave functions that strengthen and generalize recently established reverse log Sobolev and Poincaré inequalities for such functions. This leads naturally to the concept of f -divergence and, in particular, relative entropy for s-concave and log concave functions. We establish their basic properties, among them the affine invariant valua...

متن کامل

Nonparametric Bayes Inference for Concave Distribution Functions

A way of making Bayesian inference for concave distribution functions is introduced. This is done by uniquely transforming a mixture of Dirichlet processes on the space of distribution functions to the space of concave distribution functions. The approach also gives a way of making Bayesian analysis of mul-tiplicatively censored data. We give a method for sampling from the posterior distributio...

متن کامل

A Utility Equivalence Theorem for Concave Functions

Given any two sets of independent non-negative random variables and a non-decreasing concave utility function, we identify sufficient conditions under which the expected utility of sum of these two sets of variables is (almost) equal. We use this result to design a polynomialtime approximation scheme (PTAS) for the utility maximization in a wide variety of risk-averse settings (when the risk a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2008

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2005.06.014